HIV is present to variable degrees in the blood and genital secretions of virtually all individuals infected with HIV, regardless of whether or not they have symptoms. The spread of HIV can occur when these secretions come in contact with tissues such as those lining the vagina, anal area, mouth, eyes (the mucus membranes), or with a break in the skin, such as from a cut or puncture by a needle. The most common ways in which HIV is spreading throughout the world include sexual contact, sharing needles, and by transmission from infected mothers to their newborns during pregnancy, labor (the delivery process), or breastfeeding. (See the section below on treatment during pregnancy for a discussion on reducing the risk of transmission to the newborn.)
Sexual transmission of HIV has been described from men to men, men to women, women to men, and women to women through vaginal, anal, and oral sex. The best way to avoid sexual transmission is abstinence from sex until it is certain that both partners in a monogamous relationship are not HIV-infected. Because the HIV antibody test can take months to turn positive after infection occurs, both partners would need to test negative for at least 12 and up to 24 weeks after their last potential exposure to HIV. If abstinence is out of the question, the next best method is the use of latex barriers. This involves placing a condom on the penis as soon as an erection is achieved in order to avoid exposure to pre-ejaculatory and ejaculatory fluids that contain infectious HIV. For oral sex, condoms should be used for fellatio (oral contact with the penis) and latex barriers (dental dams) for cunnilingus (oral contact with the vaginal area). A dental dam is any piece of latex that prevents vaginal secretions from coming in direct contact with the mouth. Although such dams occasionally can be purchased, they are most often created by cutting a square piece of latex from a condom.
The spread of HIV by exposure to infected blood usually results from sharing needles, as in those used for illicit drugs. HIV also can be spread by sharing needles for anabolic steroids to increase muscle, tattooing, and body piercing. To prevent the spread of HIV, as well as other diseases including hepatitis, needles should never be shared. At the beginning of the HIV epidemic, many individuals acquired HIV infection from blood transfusions or blood products, such as those used for hemophiliacs. Currently, however, because blood is tested for both antibodies to HIV and the actual virus before transfusion, the risk of acquiring HIV from a blood transfusion in the United States is extremely small and is considered insignificant.
There is little evidence that HIV can be transferred by casual exposure, as might occur in a household setting. For example, unless there are open sores or blood in the mouth, kissing is generally considered not to be a risk factor for transmitting HIV. This is because saliva, in contrast to genital secretions, has been shown to contain very little HIV. Still, theoretical risks are associated with the sharing of toothbrushes and shaving razors because they can cause bleeding, and blood can contain large amounts of HIV. Consequently, these items should not be shared with infected people. Similarly, without sexual exposure or direct contact with blood, there is little if any risk of HIV contagion in the workplace or classroom.
In individuals not infected with HIV, the CD4 count in the blood is normally above 400 cells per mm3 of blood. People generally do not become at risk for HIV-specific complications until their CD4 cells are fewer than 200 cells per mm3. At this level of CD4 cells, the immune system does not function adequately and is considered severely suppressed. A declining number of CD4 cells means that HIV disease is advancing. Thus, a low CD4 cell count signals that the person is at risk for one of the many opportunistic infections that occur in individuals who are immunosuppressed. In addition, the actual CD4 cell count indicates which specific therapies should be initiated to prevent those infections.
The viral load actually measures the amount of virus in the blood and may partially predict whether or not the CD4 cells will decline in the coming months. In other words, those people with high viral loads are more likely to experience a decline in CD4 cells and progression of disease than those with lower viral loads. In addition, the viral load is a vital tool for monitoring the effectiveness of new therapies and determining when drugs are and are not working. Thus, the viral load will decrease within weeks of initiating an effective antiviral regimen. If a combination of drugs is very potent, the number of HIV copies in the blood will decrease by as much as hundredfold, such as from 100,000 to 1,000 copies per mL of blood in the first two weeks and gradually decrease even further during the ensuing 12-24 weeks. The ultimate goal is to get viral loads to below the limits of detection by standard assays, usually less than 50 or 75 copies per mL of blood. When viral loads are reduced to these low levels, it is believed that the viral suppression will persist for many years as long as the patient consistently takes their medications.
Drug-resistance testing also has become a key tool in the management of HIV-infected individuals. Details of these tests will be discussed later. Clearly, resistance testing is now routinely used in individuals experiencing poor responses to HIV therapy or treatment failure. In general, a poor response to initial treatment would include individuals who fail to experience a decline in viral load of approximately hundredfold in the first weeks, have a viral load of greater than 500 copies per mL by week 12, or have levels greater than 50 or 75 copies per mL by week 24. Treatment failure would generally be defined as an increase in viral load after an initial decline in a person who is believed to be consistently taking his or her medications. More recent guidelines from the U.S. Department of Health and Human Services (DHHS) (http://www.aidsinfo.nih.gov) and International AIDS Society-USA (IAS-USA) have suggested that resistance testing be performed in individuals who have never been on therapy to determine if they might have acquired HIV that is resistant to drugs.
Sexual transmission of HIV has been described from men to men, men to women, women to men, and women to women through vaginal, anal, and oral sex. The best way to avoid sexual transmission is abstinence from sex until it is certain that both partners in a monogamous relationship are not HIV-infected. Because the HIV antibody test can take months to turn positive after infection occurs, both partners would need to test negative for at least 12 and up to 24 weeks after their last potential exposure to HIV. If abstinence is out of the question, the next best method is the use of latex barriers. This involves placing a condom on the penis as soon as an erection is achieved in order to avoid exposure to pre-ejaculatory and ejaculatory fluids that contain infectious HIV. For oral sex, condoms should be used for fellatio (oral contact with the penis) and latex barriers (dental dams) for cunnilingus (oral contact with the vaginal area). A dental dam is any piece of latex that prevents vaginal secretions from coming in direct contact with the mouth. Although such dams occasionally can be purchased, they are most often created by cutting a square piece of latex from a condom.
The spread of HIV by exposure to infected blood usually results from sharing needles, as in those used for illicit drugs. HIV also can be spread by sharing needles for anabolic steroids to increase muscle, tattooing, and body piercing. To prevent the spread of HIV, as well as other diseases including hepatitis, needles should never be shared. At the beginning of the HIV epidemic, many individuals acquired HIV infection from blood transfusions or blood products, such as those used for hemophiliacs. Currently, however, because blood is tested for both antibodies to HIV and the actual virus before transfusion, the risk of acquiring HIV from a blood transfusion in the United States is extremely small and is considered insignificant.
There is little evidence that HIV can be transferred by casual exposure, as might occur in a household setting. For example, unless there are open sores or blood in the mouth, kissing is generally considered not to be a risk factor for transmitting HIV. This is because saliva, in contrast to genital secretions, has been shown to contain very little HIV. Still, theoretical risks are associated with the sharing of toothbrushes and shaving razors because they can cause bleeding, and blood can contain large amounts of HIV. Consequently, these items should not be shared with infected people. Similarly, without sexual exposure or direct contact with blood, there is little if any risk of HIV contagion in the workplace or classroom.
What laboratory tests are used to monitor HIV-infected people?
Two blood tests are routinely used to monitor HIV-infected people. One of these tests, which counts the number of CD4 cells, assesses the status of the immune system. The other test, which determines the so-called viral load, directly measures the amount of virus in the blood.In individuals not infected with HIV, the CD4 count in the blood is normally above 400 cells per mm3 of blood. People generally do not become at risk for HIV-specific complications until their CD4 cells are fewer than 200 cells per mm3. At this level of CD4 cells, the immune system does not function adequately and is considered severely suppressed. A declining number of CD4 cells means that HIV disease is advancing. Thus, a low CD4 cell count signals that the person is at risk for one of the many opportunistic infections that occur in individuals who are immunosuppressed. In addition, the actual CD4 cell count indicates which specific therapies should be initiated to prevent those infections.
The viral load actually measures the amount of virus in the blood and may partially predict whether or not the CD4 cells will decline in the coming months. In other words, those people with high viral loads are more likely to experience a decline in CD4 cells and progression of disease than those with lower viral loads. In addition, the viral load is a vital tool for monitoring the effectiveness of new therapies and determining when drugs are and are not working. Thus, the viral load will decrease within weeks of initiating an effective antiviral regimen. If a combination of drugs is very potent, the number of HIV copies in the blood will decrease by as much as hundredfold, such as from 100,000 to 1,000 copies per mL of blood in the first two weeks and gradually decrease even further during the ensuing 12-24 weeks. The ultimate goal is to get viral loads to below the limits of detection by standard assays, usually less than 50 or 75 copies per mL of blood. When viral loads are reduced to these low levels, it is believed that the viral suppression will persist for many years as long as the patient consistently takes their medications.
Drug-resistance testing also has become a key tool in the management of HIV-infected individuals. Details of these tests will be discussed later. Clearly, resistance testing is now routinely used in individuals experiencing poor responses to HIV therapy or treatment failure. In general, a poor response to initial treatment would include individuals who fail to experience a decline in viral load of approximately hundredfold in the first weeks, have a viral load of greater than 500 copies per mL by week 12, or have levels greater than 50 or 75 copies per mL by week 24. Treatment failure would generally be defined as an increase in viral load after an initial decline in a person who is believed to be consistently taking his or her medications. More recent guidelines from the U.S. Department of Health and Human Services (DHHS) (http://www.aidsinfo.nih.gov) and International AIDS Society-USA (IAS-USA) have suggested that resistance testing be performed in individuals who have never been on therapy to determine if they might have acquired HIV that is resistant to drugs.